

Interface Circuit for Piezoelectric Vibration Energy Harvesting System Sijun Du, Yu Jia, Ashwin Seshia Nanoscience Centre, Department of Engineering, University of Cambridge, 11 JJ Thomson Avenue, Cambridge, CB3 0FF

1. Introduction

There has been increasing interest in ultra-low power wireless sensors and sensor systems that harvest energy from environmental sources [1]. Small-scale

$$V_{pp(open)} > 2 (V_s + 2 V_D) = V_{TH}$$

or MEMS-scale vibration energy harvesters and issues surrounding efficient conditioning of the generated electrical power have been the subject of much recent academic research.

2. Full-bridge rectifier

The commonly used interface circuit is full-bridge rectifier:

- Less complexity.
- Low power conversion efficiency.
- High threshold \succ

Fig. 4: Equivalent circuit of a piezoelectric harvester

Reasons of this threshold:

- Storage capacitor voltage Vs. *
- Diode forward voltage drop VD. *
- Piezo harvester internal capacitor Cp. **

Due to this threshold, the amount of charge used to charge C_p is totally wasted and this causes a huge energy loss. Assuming the internal capacitance of piezo harvester is Cp, the charge that wasted in a half vibration cycle is:

$$\mathbf{O} \mathbf{O} (\mathbf{V} \mathbf{I} + \mathbf{O} \mathbf{V} \mathbf{I})$$

Fig. 7: Vpiezo waveform using P-SSHI

Advantages of P-SSHI compared to conventional full-bridge rectifier:

- Charge loss reduced from 2 Cp (Vs + 2 VD) to Cp Vth
- Threshold reduced from 2 (Vs + 2 VD) to Vth (approximately lowered by 80%)

Design consideration:

- Low power consumption.
- High stability. >
- Low on-resistance of switch M1 (for higher power conversion efficiency and lower

Figure 1 shows the interface circuit of using a fullbridge rectifier with four diodes. VD is the forward voltage drop of a diode, Vs is the voltage across the storage capacitor Cs, which is used as an intermediate energy storage capacitor. A battery capacitor CBAT is connected through a bulk DC-DC converter using switches and an inductor.

Fig. 5: Percentage of wasted charge

Method of maximizing the power efficiency of the interface circuit:

Minimize Qwasted **

*

- Minimize power consumption of circuit **
 - Minimize threshold voltage 2(Vs + 2 VD)

3. Parallel-SSHI interface

P-SSHI (Parallel-Synchronized Switch Harvesting on Inductor) [2] employs an inductor to flip the voltage Vpiezo to –Vpiezo in order to minimize the loss due to charging and discharging of Cp.

threshold Vth)

4. Results and conclusion

The P-SSHI interface can significantly improve the power conversion efficiency, especially in small environmental excitations.

Vs	Full-bridge	P-SSHI
1 V	14 µW	23 µW
2 V	7 μW	42 µW
3 V	0	55 µW
4 V	0	63 µW

There are some design challenges:

- Zero current crossing timing (the ** switch M1 should be turned on exactly when current ip crosses zero)
- Φ_{BF} pulse width controlling *

Other possible ways to increase efficiency:

**

Fig. 3: Vpiezo waveform

In order to transfer charge from the piezoelectric harvester to the storage capacitor Cs, the voltage across the piezo harvester, note $V_{\text{piezo}} = V_{\text{P}} - V_{\text{N}}$, should be higher than a threshold voltage:

 $V_{piezo} > V_{S} + 2 V_{D}$

or $V_{\text{piezo}} < - (V_{\text{S}} + 2 V_{\text{D}})$

Decreasing C_p.

- Using diodes with lower VD.
- Increasing Vpp(open).

References:

**

**

[1] S. P. Beeby, M. J. Tudor, and N. M. White, "Energy harvesting vibration sources for microsystems applications," Measurement Science and Technology, vol. 17, p. R175, 2006.

[2] Y. K. Ramadass and A. P. Chandrakasan, "An Efficient Piezoelectric Energy Harvesting Interface Circuit Using a Bias-Flip Rectifier and Shared Inductor," Solid-State Circuits, *IEEE Journal of,* vol. 45, pp. 189-204, 2010.